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Abstract: Existing approaches to modelling software systems all too often neglect the issue of
component-mismatch identi®cation and resolution. The traditional view of software development
over-emphasises synthesis at the expense of analysis ± the latter frequently being seen as a
problem which only needs to be dealt with during the integration stage towards the end of a
development project. The paper discusses two software modelling and analysis techniques, all tool
supported, and emphasises the vital role analysis can play in identifying and resolving risks early
on. This work also combines model-based development (e.g. architectural modelling) with
component-based development (e.g. COTS and legacy systems), and shows how their
mismatch-detection capabilities complement one another to provide a more comprehensive
coverage of development risks.

1 Introduction

To be competitive, a developer's usage of commercial-off-
the-shelf (COTS) packages has become standard, at times
being an explicit requirement from the customer. The idea
of simply plugging together various COTS packages and/
or other existing/in-house-developed parts (as described in
the megaprogramming principles [1]) is, however, often
trivialised, as are the side effects that may occur by
plugging or composing these packages together [2]. Like-
wise, the development of architectural and design-model-
ling languages (e.g. Uni®ed Modelling Language [3]) has
proceeded with little emphasis on new challenges imposed
by component-based development.

This work introduces a two-tiered development metho-
dology that combines independently created component-
based and model-based development approaches [4]. The
combined approaches complement one another in their
ability to detect a larger (more comprehensive) number
of mismatches that may happen between various compo-
nent choices. The combined approaches also complement
one another in the speed with which they provide mismatch
feedback. More comprehensive mismatch analysis has the
bene®t of an increased likelihood that incompatibilities
between components are identi®ed before the actual soft-
ware system is built, potentially preventing great loss of
cost and effort. Rapid mismatch detection has the addi-

tional bene®t of a fast exclusion of nonviable component
con®gurations (architectures) for a desired system, again
reducing the cost and effort required in analysing a
potentially large set of components.

The approach described in this paper performs (i) a
high-level component analysis followed by (ii) a more
comprehensive component-enabled architectural analysis,
excluding unfeasible architectural options along the way.
Both analysis approaches detect mismatches and thus help
human decision makers in eliminating unfeasible architec-
tural options. The analysis approaches act as ®lters where
unfeasible options are removed before the next analysis
step. The ®rst ®lter is fast and can provide feedback within
hours, but is not very comprehensive. The second ®lter is
more comprehensive and thus slower, but more reliable. To
ensure continuity between them, a synthesis technique was
also created to share modelling information (e.g use of
analysis results of the ®rst ®lter as an input to the second
®lter).

The fact that the analysis ®lters trade-off precision with
speed has another bene®cial side effect. During software
development, we are (at times) confronted with both the
lack of information and its abundance. When we deal with
new issues, variables, changes etc. (e.g. new requirements)
we usually lack information and the ability to analyse its
impact seems limited. Conversely, once some aspect has
been investigated, we are often confronted with a plethora
of information spread across multiple models (e.g. docu-
ments, design models, implementation). The dual-®ltering
process can handle both situations. The ®rst ®lter is found
to be most effective early on in the software life cycleÐas
early as requirements negotiationÐwhere choices of
components, their features, and con®gurations are still
very vague. The second ®lter requires more detailed
information that becomes available later on. Architec-
tural-analysis techniques [5] used in the second ®lter
frequently also support re®nement, making it possible to
use the second ®lter recursively for even more detailed
mismatch analyses if desired.

The contributions of this paper are an incremental, rapid
and comprehensive approach to component-based software
modelling, with a strong emphasis on component-
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mismatch detection and consistent re®nement. In the
following, this paper will introduce and discuss the two-
tier development approach. To complement the discussion,
a nontrivial example is used to illustrate the approach. The
two sections discussing the individual pieces of this
approach are structured by giving an initial high-level
and generic overview, followed by a demonstration in
context of the example, and concluded with a follow-up
discussion on how other scenarios may require a different
treatment than that given in the example. Owing to the
limited space, references are provided whenever the details
cannot be discussed in this paper.

2 Approach

Simply speaking, a typical software-development process
is seen as consisting of requirements modelling, evaluation
of architectural options, architectural modelling, designing,
and ®nally coding (Fig. 1).

Section 4 deals with the exploration of different possible
realisations of the requirements. At this level, functional
details are not yet (fully) known. Instead, the focus is on
coarse-grain modelling, often also involving outside
components such as COTS or legacy systems. Analysing
architectural options tends to evaluate the suitability of
components to work together and solve the proposed
problem.

Since it would be too expensive to model each archi-
tectural option in detail, only a few suitable options should
be selected for further modelling and evaluation. Section 5
[5, 6] focuses on modelling the interior workings and
interactions of all to-be-developed parts of a proposed
system. Architectural modelling partitions the system
into coherent subsystems and describes the presumed
interactions between those subsystems and involved exter-
nal components (e.g. COTS, humans etc.). Analysis of
architectures focuses on the evaluation of roles and respon-
sibilities of architectural components as well as their
interaction protocols.

Section 6 re®nes architectural modelling by using lower-
level constructs conceptually closer to the implementation.
Thus, the design supplements the architecture by model-
ling how roles, responsibilities, and interaction protocols
are actually realised. The design typically also extends the
architecture by further subdividing architectural compo-
nents into smaller pieces and providing additional details
for them. Analysis of designs primarily focuses on evalu-
ating the consistency between the design and its architec-
ture so that the design faithfully realises the architecture
and is internally consistent.

The two-tier development approach has a strong empha-
sis on mismatch detection. Mismatches are introduced
during software development and evolution at various
levels while combining models (diagrams) into system
representations, and components into systems. In [4] it
has been shown that component integration and model
integration are two complementary activities. Components

(e.g. libraries, COTS, legacy) are used as building blocks
to create more complex components or systems. Compo-
nent-based development decreases subsystem dependency
and increases (component) reuse. Likewise, models
(diagrams) are used as building blocks for creating more
complex representations of systems. Model-based devel-
opment decreases modelling complexity and increases the
separation of concerns.

The primary bene®ts of using this approach to compo-
nent-based development are the combination of early risk
assessment of mismatches (e.g. incompatibilities) between
(off-the-shelf) components, the exhaustive modelling of
components (and their interconnections) for detailed
mismatch analysis, and the well de®ned re®nement process
for implementing component wrappers (e.g. `glue code')
and additional functionalities not captured by OTS compo-
nents. The approach is supported by several techniques
that, together, cover the three stages of the lifecycle
discussed above. The techniques also augment one another
in their ability to detect larger sets (and more detailed
types) of component mismatches.

In the following sections the two stages of our compo-
nent-based development approach are discussed. Each
section describes what information is available at that
stage, what the goals are, and what approaches have to
be followed to reach those goals. It will be illustrated how
mismatches can be identi®ed during each stage, in the
context of an example. The tool support that is available for
each stage will be discussed.

3 Example system

The proposed example is a hospital system that extends a
legacy application and incorporates some COTS capabil-
ities. The COTS component Medication DB is a compre-
hensive database about existing medications and their side
effects. It is used in the hospital system to identify auto-
matically whether a newly introduced medication for a
patient con¯icts with previous or current medications.

The current legacy system covers parts of the proposed
capabilities (see shaded area in Fig. 2). However, the
legacy system needs to be extended to support automated
medication analysis. In particular, elements of the legacy
system dealing with patients and treatments require a more
precise de®nition of their activities. The legacy system
describes treatment information in plain English. For an
automated analysis of treatments and side effects, as well
as automated report generation of treatment options and
results, the information-capture part of the legacy system
needs to be enhanced to become more systematic.

4 Evaluating architectural options

Early on in any software engineering effort, several archi-
tectural options may be considered. These are based on the
set of given requirements and must be evaluated, supporting
a reduction in the number of options, and then further
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re®ned [7]. These architectural options are high-level
descriptions of components and their expected interactions.
Among others, they must be evaluated to determine archi-
tectural mismatches they may entail. The goals described in
this section are to model components with their architec-
tural features and to minimise mismatches between them.

4.1 Finding conceptual features to describe
components

The existence of architectural mismatches among various
parts of a system may seriously hinder a component-based
software-engineering effort [2]. Architectural mismatches
are caused by inconsistencies between two or more
constraints of different architectural parts being composed.
Architectural mismatches may vary considerably in terms
of the kind of impact they have. Some may easily be
avoided by the simple use of a wrapper, whereas others
may be extremely expensive to handle. This illustrates the
importance of early risk assessment when reuse possibi-
lities are being considered.

To perform early risk assessment during component
composition, the Architect's Automated Assistant
approach and tool (AAA) are used [8]. AAA is a
mismatch-detection approach that supports rapid evalua-
tions of components with respect to the potential incom-
patibilities among them. AAA takes as input a high-level
description of the (sub)systems to be composed and the
kinds of interactions expected among the components in
the subsystem. Based on those descriptions it is possible to
infer mismatches among the components. Subsystem
descriptions can be given in terms of architectural styles
or speci®c architectural features. Some of the component
features supported by AAA are:

(a) Backtracking: does the component support backtrack-
ing while trying to solve a problem?
(b) Concurrency: is the component multithreaded or not?
(c) Control unit: is there a special subcomponent within
the component responsible for arbitrating which compo-
nents are to execute at any given point in time? If so, is this
a central control unit or are there distributed ones?
(d) Distribution: is the component mapped to more than
one hardware node or not?
(e) Encapsulation: does the component include some
private data and/or control elements?
( f ) Layering: does the component use some layering with
respect to control or data connectors?
(g) Pre-emption: is pre-emption required in the subsystem,
i.e. are there tasks that must be interrupted and suspended
to start or continue running another task?
(h) Recon®guration: does the component support online
recon®guration or does it require of¯ine intervention?
( j) Re-entrance: reentrant code can have multiple simul-
taneous, interleaved, or nested invocations which will not
interfere with each other. Does the component contain
reentrant parts?
(k) Response times: does the component have some
predictable, bounded or unbounded response-time require-
ments? Is it cyclic (i.e. does it contain a cycle that will run
inde®nitely)?
(l) Supported data transfers: how are data transferred
within the component? Is it via shared variables, explicit
data connectors (such as pipes), and/or shared repositories?

Other features supported by AAA and not included here
are component priorities, dynamism and triggering
capabilities. For a detailed description of the complete
feature set as well as their relevance for architectural
mismatches refer to [8].

The various component features are gathered by inter-
viewing the people that were or will be involved in their
development and maintenance. Re-engineering existing
parts may also be of help, as long as not too much effort
is invested. The same approach is also used for COTS
packages, since vendors may be willing to give out at least
general information on these characteristicsÐthey do
describe the system and often help describe APIs, without
giving away secrets that could reduce the vendor's compe-
titive advantage. Features whose values are unknown are
simply reported as such.

An architectural style de®nes a family of systems based
on a common structural organisation [5]. It constrains both
the design elements and the formal relationships among the
design elements [6]. The set of constraints imposed on a
style determines the set of features that are ®xed for the
style, as well as those that may vary from system to system
within the given style. Consequently, the use of architec-
tural styles simpli®es the description task by already
inheriting the values for the features relevant at the style
level. Those features not ®xed for the style are initially set
to unknown, and may potentially be re®ned as system-
speci®c knowledge becomes available. AAA contains a set
of prede®ned architectural style descriptions, but allows
descriptions of other styles based on their feature set,
covering both ®xed and unconstrained values. The set of
software connectors (interactions) supported by AAA are
calls, spawns (or forks), data connectors (e.g. pipes),
shared data variables, triggers and shared resources (e.g.
a hardware node).

AAA handles partial descriptions of software compo-
nents due to the fact that it can be used very early in the
software development process, when information is scarce
and not yet fully de®ned. AAA deals with incomplete
information by making pessimistic assumptions while
checking for architectural mismatches. Since component-
mismatch analysis is carried out based on assumptions, the
results obtained are not precise. However, these results are
highly valuable for risk assessment, and provide some
insight for later re®nement of the previously unconstrained
features.

4.2 Detecting component mismatches with AAA

In the context of the hospital system, AAA was given the
information depicted in Fig. 3. This is a very high-level
architectural model describing the proposed interactions of
the existing legacy system (Patient System). COTS product
(Medication DB), and the subsystems under development
(Hospital Core, User Interface). The component Hospital
Core is yet to be developed but its set of desirable
component features is known. However, it is desired not
to overconstrain the options at this point by already
committing to an architectural style. Features for the
Hospital Core have been set in AAA according to the
description shown in Fig. 3. Note that some features, such
as control unit and pre-emption, have been set as
`unknown'. The other components are de®ned similarly.
Note that for brevity only the features of the most signi®-
cant component are listed, excluding those of others such
as User Interface.

AAA generates a list of potential mismatches by check-
ing the descriptions of the components and the connectors
used to compose them against a set of prede®ned mismatch
rules. Mismatch rules are speci®ed in terms of precondi-
tions and potentially resulting problems that may result
from them. A mismatch example would be: `This compo-
nent is sharing data with some component(s) that may later
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backtrack', with the associated precondition that at least
one of the subsystems sharing a given data set has back-
tracking, and the speci®c problem of concern being the fact
that, while backtracking these may have undesired side-
effects on the overall system state. The presence of such a
precondition would be checked by iterating through every
pair of components connected via shared data, and verify-
ing whether at least one of the components has the back-
tracking feature.

As a result of the AAA analysis, an indication is
obtained of potential risks which might be encountered at
a later state when combining those components. In the
present example, AAA is able to detect roughly 20
mismatches. Nonetheless, AAA comes up short in actually
specifying the details of how the component interaction is
enabled and, speci®cally, how the Hospital Core compo-
nent is actually realised. The following lists an excerpt of
mismatches detected by AAA while processing the Hospi-
tal System information on components and connectors as
depicted in Fig. 3 (these mismatches are discussed in more
detail below):

(i) A remote connector is extended into or out of a
nondistributed subsystem. The originally nondistributed
subsystem(s) cannot handle delays and/or errors occurring
due to some distributed communication event (violating
subsystems: Hospital Core and Patient System, Hospital
Core and Medication DB);
(ii) Sharing data with some component(s) that may later
backtrack. Backtracking may cause undesired side effects
on the overall composed system state (violating subsys-
tems: Hospital Core and Patient System);
(iii) Only part of the resulting system automatically recon-
®gures upon failure (violating subsystems: Recon®guration
on-line: Hospital Core, Recon®guration off-line: User
Interface, Patient System);
(iv) Call to a component that performs on-the-¯y garbage
collection; undesirable side effects on the overall predict-
able response times (violating subsystems: Hospital Core
and Patient System)

The AAA approach is tool supported. The results obtained
while analysing the information relevant to the Hospital
System can be seen in Fig. 4. One of the great advantages
of using the AAA tool is the minimal effort required for
obtaining results, as well as experimenting on varying the
features and/or connectors used.

Fig. 4 AAA screen snapshots
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4.3 Minimising component mismatches through
architectural trade-off analysis

The results obtained by analysing architectural descriptions
with AAA must be dealt with by domain and application
experts to determine the mismatches that are a real threat
and decide how to deal with them. Some of the approaches
that may be used for mismatch-risk minimisation include
but are not limited to, using a different (set of) compo-
nent(s) with differing characteristics to support same
required functionality, changing the means of components
interaction (connectors), varying the features of the compo-
nents to be built, and introducing wrappers or instrumented
connectors [9]. All but the last of these approaches is of an
exploratory character, and hence easily supported by AAA,
requiring only a very limited set of actions. The main result
of this risk-minimisation activity is a high-level architec-
tural description re¯ecting the component con®guration
that has the greatest chances of success.

5 Architecture modelling to integrate
components

Section 4 presented an approach (AAA) whereby a preli-
minary, coarse-grain model of a system based on its major
components is used to identify one or more viable archi-
tectural options for the system and highlight any unre-
solved risks associated with each option. These issues are
dealt with early in a system's lifecycle, thus potentially
minimising the costs of selecting suboptimal options or
failing to mitigate the major risks. However, the AAA
approach by itself does not provide the mechanisms needed
to perform in-depth comparisons of identi®ed options or to
resolve the risks. Instead, AAA must be accompanied by
additional approaches that will, for each architectural
option:

(i) Find an architectural style that supports the system's
current components, their conceptual features, and their
interactions (recall the discussion in Section 4). Certain
styles may be better suited than others to handle particular
types of components, features, and interactions. Some
styles may even resolve certain risks carried over from
the evaluation of architectural options. Additionally, an

architect must ensure that styles do not clash with system
requirements and exacerbate other known risks. Finally, it
may be dif®cult to assess the impact of a style and the
architectural model on a given issue, in which case any
decision must be deferred pending additional modelling
and analysis (e.g. as proposed in Section 6);
(ii) Assess the ability of the chosen style to help minimise
the mismatches between those components, features, and
interactions;
(iii) Carefully model the critical aspects of the system in
the chosen style, e.g. by using an architecture description
language (ADL); [10] and
(iv) Analyse the architectural model for model
mismatches. Note that these mismatches will typically
differ from those identi®ed by AAA since the architectural
model will be more detailed and complete.

5.1 Finding an architectural style to ®t
components

Architectural options, as found through AAA in Section 4,
come up short in specifying how components have to be
built (or wrapped in the case of OTS) and how they must
interact. To re®ne a given architectural option into an
eventual implementation, the components, connectors and
their interconnections (guided by the rules of a given style)
have to be de®ned in a more rigorous manner. All software
systems adhere to some architectural style. Common styles
include layered, client-server, pipe and ®lter, event-based
and main±subroutine [5]. An architectural style de®nes the
relationships of components and connectors that are shared
across systems. Choosing an (in)appropriate architectural
style(s) has considerable impact on the feasibility of a
project. The method described here provides help in this
regard. For clarity, the method is illustrated in the context
of the Hospital System example.

Table 1 couples the notion of component features
(Section 4) and styles, showing their relationship (a more
complete version of the table is given in [8]). The table can
be used as a selection mechanism to infer candidate styles
out of known components, connectors and their con®gura-
tions. For example, although the Hospital Core component
in the Hospital System currently has no style explicitly
associated with it, its conceptual features exclude many

Table 1: Mapping component features to architectural styles

Features Distributed
process

Event-based Main±
subroutine

Pipe and ®lter Database
centric

Real time C2SADEL

Backtracking no no no no yes no no

Concurrency multi-threaded multi-threaded single-threaded multi-threaded multi-threaded multi-threaded multi-threaded

Control unit none none none central central

Distribution multiple nodes single nodes

Encapsulation

Data/control
layer

Pre-emption no no yes

Recon®guration

Re-entrance no no yes no

Response time unbounded unbounded unbounded unbounded bounded unbounded unbounded

Shared variable yes no

Data connector yes yes yes
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potential styles. From Fig. 3, we know that Hospital Core
must support concurrency. We learn from Table 1 that all of
the styles considered, except for main-subroutine, support
concurrency. The main-subroutine style should therefore
not be used as an architectural style in this case. This
exclusion method can be applied in the context of all other
features.

Further analysis establishes that, of the four major
components in the present case study, two follow the
database-centric style (Hospital Repository and Medica-
tion DB), one follows the event-based style (User Inter-
face), and the last one is unspeci®ed (Hospital Core). In
choosing an architectural style for the overall system, an
architectural style that ®ts all components and their
proposed forms of interactions must also be chosen.
(Note that it is indeed possible to select multiple archi-
tectural styles for different parts of a given application.
The present approach allows this, in the same manner as
discussed above, assuming that the styles are inherently
compatible. (Architectural style incompatibilities [11] are
beyond the scope of this work). In this case all compo-
nents are currently de®ned as nondistributed, i.e. each
individual component resides in a single address space.
By itself, this property does not place any constraints on
the con®guration of the entire system, meaning that all
styles remain in the candidate pool. Because of the need
for concurrent components, the overall system must also
be concurrent (excluding the main-subroutine style again).
Since some components require re-entrance and others do
not, it is necessary to use a style that supports both
(excluding pipe-and-®lter and real-time). Finally, since
some components require a central control unit, all
styles not supporting such a unit may be excluded as
well (e.g. distributed processes).

With the remaining three styles (event-based, database-
centric, and C2) we encounter a con¯ict. On the one hand,
system response time needs to be unbounded, due to the
Hospital Core component. On the other hand, backtracking
capabilities are needed to support the Patient System
component. The former favours the event-based or C2
styles, whereas the latter favours the database-centric
style. To resolve this con¯ict, it is necessary either to
investigate additional styles or to use additional informa-
tion:

(i) To choose between event-based and C2, may choose
the one with the greatest feature coverage: in this case, the
example favours the C2 style since it supports explicit data
connectors as required by the Hospital Core component
(C2 is an event-based style with exactly that extension).
(ii) To choose between C2 and database-centric, we may
choose the one with the highest potential for resolving
known architectural mismatches (or risks) as they were
identi®ed in Section 4. To address the `remote-connector
mismatch', C2-style connectors limit the effects of indivi-
dual components on overall system structure and evolution.
C2 components exhibit very low coupling: a component is
only aware of a single connector above and/or a single
connector below it. That means that components can be
added, removed, replaced or reconnected in a C2-style
architecture, even at runtime, without their neighbouring
components ever needing to know about those changes
[12]. One the other hand, the database-centric style is not
well suited to this case. Conversely, the database-centric
style is well suited to address the `sharing-data-and-
component-backtracking mismatch', for which C2 is not
as well suited. The `automatic recon®guration mismatch' is
addressable by C2: the message-based interaction of C2

components via connectors presents an ideal foundation
for system adaptability, both of¯ine and at system runtime
[12]. It is important to note that the fourth mismatch
discovered by the AAA tool (response time due to on-
the-¯y garbage collection) is well supported neither by C2
nor by the database-centric style.

As will often be the case, none of the three styles is the
perfect ®t to this problem. In such a case, the selection of a
style is based on an evaluation of which style can most
easily be amended to address its de®ciencies. If the
selected architectural options simply cannot be implemen-
ted by any of the candidate styles, another option should be
chosen. If no architectural option can be satis®ed, then this
may indicate a need for a change in the requirements.
Speci®cally, for the hospital application C2 can be
amended to deal with the backtracking issue. The topolo-
gical rules and message-based communication of C2
support easy update of components. In particular, if the
Patient System component from Fig. 3 backtracks, it can
send a message to that effect to the Hospital Repository; in
turn, the Repository will issue a noti®cation message,
which will be relayed by the appropriate connector(s) to
the Hospital Core component. Note that Hospital Reposi-
tory is a COTS component and, as such, is unlikely to
adhere to C2's interaction rules. However, C2 provides a
set of simple mechanisms and resulting tools for incorpor-
ating heterogeneous OTS components [13]. In particular, a
lightweight wrapper can be constructed for Hospital Repo-
sitory, as discussed below.

Section 5.2 will therefore model in more detail the
chosen architectural option from Section 4 using the C2
style and its accompanying suite of modelling, analysis and
implementation technologies. The goal of the further
analysis is to investigate in more detail whether the
above shortcoming can be mended, and whether there are
other currently unknown risks. The potential role of other
architectural technologies as candidates for effecting addi-
tional architectural styles will also be discussed brie¯y
(e.g. layered, event-based, database-centric).

5.2 Modelling the Hospital System in C2SADEL

In this section the approach is discussed to leveraging an
architectural style (C2) and using an ADL (C2SADEL) to
further re®ne (or de®ne) the component and connector
features that were not elucidated as part of the process of
evaluating architectural options (Section 4). An explicit
architectural model allows mismatches to be detected at the
level of component interfaces, behaviours and interaction
protocols. Explicit models are also amenable to analysis
tools that support rapid evaluations of architectural
descriptions and highlight key problem areas in a given
system's model.

The C2-style breakdown of the hospital-system archi-
tecture is shown in Fig. 5. The shaded portion in the centre
of the architecture represents a re®nement of the Hospital
Core component from Fig. 3. C2 allows Hospital Core to
be modelled as a single component or, hierarchically, to
contain an internal architecture of its own.

Recall from Section 4 that the re-engineered hospital
system will include components that supplement the archi-
tecture functionality already provided by one or more of
the legacy components. Thus, for example, the Patients
component in Hospital Core will supplement the legacy
Patient System component. The Patient Handling compo-
nent will issue patient handling messages. In turn, those
messages will be routed by the appropriate connector(s) to
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one of the two patient processing components (e.g. based
on their interfaces). Occasionally, Patient Handling will
issue patient treatment related messages to the Treatment
component, which will, in turn, consult the COTS Medica-
tion DB component to determine, for example, any
con¯icts in prescribed medications. Similarly, the Facilities
and Staff components will handle their respective respon-
sibilities, while the Reports component will invoke any of
the above components which it needs to produce a report
the user demands via the User Interface component. The
Hospital Core and Patient System components may store
some information internally, or they may occasionally
request information from a central, COTS Hospital Repo-
sitory.

Fig. 5 gives us a good understanding of the `big picture',
i.e. the Hospital System's overall architectural breakdown.
However, to ensure that the architecture exhibits the
desired properties and that the different components can
interact in envisioned ways, a more detailed and formal
speci®cation of the architecture is needed. For that
purpose, C2SADEL, a language for describing and evol-
ving C2-style architectures [14], is employed.

A C2SADEL architecture is speci®ed in three parts:
component types, connector types and topology. The
topology, in turn, de®nes component and connector
instances for a given system and their interconnections.
A partial description of the architecture shown in Fig. 5 is

hospital

repository

repository conn.

PatSys conn

patient

system

(legacy) medication

DB

(COTS)

MDB conn

facilities patients staff treatment

internal conn

patient

handling
reports

UI conn

user

interface

hospital

core

Fig. 5 Hospital System architecture modelled in C2

HospitalSystem is f
component types f

component TreatmentComp is extern fTreatmentComp.c2;g
component MedicationDBComp is virtual fg
. . .

g
connector types f

connector FiltConn is ffilter msg filter;g
connector RegConn is ffilter no filter;g

g
architectural topology f

component instances f
Treat : TreatmentComp;

MedDB : MedicationDBComp;

. . .

g
connector instances f
TreatConn : FiltConn;

PatConn : FiltConn;

. . .

g
connections f

connector TreatConn f
top MedDB, PatConn;

bottom Treat;

g
connector PatConn f

top PatSys, RepConn;

bottom TreatConn, InternConn, Fac, Pat, Staff;

g
. . .

ggg
Fig. 6 Partial speci®cation of the Hospital System
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given in Fig. 6. The Treatment component type is speci®ed
externally, i.e. in a different ®le (Treatment.c2). The
Medication DB component type is speci®ed as a virtual
type; it can be used in the de®nition and analysis of the
topology, but it does not have a speci®cation and does not
affect analysis of component conformance. The concept of
virtual types is useful for components for which imple-
mentations are known to already exist, but which are not
speci®ed in C2SADEL (e.g. COTS). Note that Medication
DB is modelled as a virtual component in this case only to
demonstrate this feature of C2SADEL. A typical approach
to modelling COTS components has been to extract from
their available documentation, e.g. AP1, the desired
services and model them in C2SADEL, thus permitting
more meaningful component conformance analysis).

Individual components, such as Treatment shown in Fig.
7, are speci®ed to contain a set of component state
variables, a component invariant and a set of services.
Each service consists of an interface and an operation;
operations are modelled via pre- and post-conditions in
®rst-order logic. A service can be provided by the modelled
component or required of some other component in an
architecture. Finally, interfaces and operations are sepa-
rated, so that it is possible for an operation to export
multiple interfaces.

5.3 Minimising component mismatches through
architectural analysis

The speci®cation of component invariants and services in
C2SADEL allows components that are composed in an
architecture to be analysed for conformance. For example,
the required medConf service of the Treatment component
must be matched by a provided service of one of the
components to which Treatment is attached in the Hospital
System architecture. More speci®cally, owing to C2's style
rules, this service must be matched by one of the compo-

nents above Treatment in the architecture, namely Medica-
tion DB, Patient System, or Hospital Repository. A
required service P matches a provided service Q if the
following conditions hold [15]:

(a) P and Q have identical interface and interface para-
meter names;
(b) Either both P and Q have a return value or neither
does;
(c) The types of P's interface parameters are subtypes of
the types of Q's interface parameters;
(d) The type of P's return value is a supertype of the type
of Q's return value;
(e) P's precondition implies Q's precondition; and
( f ) Q's postcondition implies P's postcondition.

At a minimum, these rules ensure that, if, for example,
procedure calls are used to enable the interactions of the
implementations of the components containing P and Q,
those interactions will be allowed by the underlying
programming language. Additionally, the analysis of
preconditions and postconditions permits establishment
of the behavioural conformance of the two components.
Since manual conformance checking would be a time-
consuming and error-prone task, the SAAGE environment
is used to perform automatic model checking of an archi-
tecture. Further, SAAGE supports automated generation of
the architecture's prototype implementation [14]. The
prototype allows observation and rapid evaluation of criti-
cal dynamic system properties.

Fig. 8 shows a screenshot of SAAGE and the results of
its analysis of the hospital system speci®ed in C2SADEL.
Fig. 8 also shows the resulting UML model automatically
generated in Rational Rose. Note that SAAGE reported
three mismatches in the `Architectural Type Mismatch'
pane. The ®rst mismatch states that the Treatment compo-

component Treatment is f
statef

cur pats : nset Pat ID;

pat meds : nset Med;==implement as PatIDÿ > nset Med;

g
invariant fcur patsneqgreater 0;g
interfacef

prov ip' : presoriceMed �p : Pat ID; m : Med�;
req ir' : medConf (new m : Med; old m :nset Med�;Bool;

g
operationsf

prov op' : f
let pid : Pat ID; m : Med;

pre (mnnot in pat meds);

post (pidnin - cur cats)nand (mnin - pat meds);

g
req or' : f

let m : Med; ms :nset Med;

postnresult � �mnin ms�;
g

g
map f

ip'ÿ > op' : �pÿ > pid, mÿ > m�;
ir'ÿ > or' : �new mÿ > m, old mÿ > ms�;

gg
Fig. 7 Partial speci®cation of the Treatment component in C2SADEL
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nent's required service medConf cannot be matched
because no components are attached above it. In this
case, this simply means that all components attached
above Treatment in the hospital-system architecture, such
as Medication DB, are virtual and SAAGE was unable to
use them to establish component conformance.

The second mismatch is more interesting: it indicates
that SAAGE was able successfully to match the interface
of Patient Handling component's required service prescri-
beMed to Treatment's corresponding provided service.
However, the required behaviour does not match the
provided behaviour. The preconditions and postconditions
of the two operations are speci®ed in Table 2. To satisfy
behavioural conformance rules, the following two relation-
ships must hold:

(a) req precondition implies prov precondition, i.e.

(p nin pats) => (m nnot in pat meds)

(b) prov postcondition implies req postcondition, i.e.

(p nin �cur pats) nand (m nin �pat meds)

�> (m nin �meds)
The ®rst relationship clearly cannot be established: the left-
hand side (LHS) of the implication deals with patients and
the right-hand side (RHS) with medications. The second
relationship is of the form A and B�>A, which is always
true. To permit the match of the postconditions, SAAGE
had to unify the RHS variable meds, which is of the generic
type STATE VARIABLE [14, 15], with the LHS variable
pat meds, which is de®ned as part of the Treatment
component's state (recall Fig. 7).

Since the necessary relationship between the precondi-
tions could not be established, SAAGE also attempts to
match Patient Handling component's required service
prescribeMed to the provided services of the other compo-
nents attached above it in the Hospital System architecture.
None of the other components provide a corresponding
service, resulting in the third architectural type mismatch
shown in Fig. 8. Finally, note that the architect's decision to
generate the UML model in spite of the mismatches
indicates the architect's belief that those mismatches are
either not critical or would be remedied during the system's
design phase.

5.4 Applicability to other styles and ADLs

The above discussion demonstrated the coupling of AAA
and C2, two techniques independently developed by the
authors. However the overall approach to exploiting archi-
tectures to aid component-mismatch detection is in no way
predicated on the use of C2, quite the contrary. The same
general process can be used when other styles and ADLs
are coupled to aid in software modelling and analysis [10].
For example, the event-based style may be used effectively
in conjunction with the Rapide ADL [16]; similarly, the
layered style may be used with the GenVoca ADL [17]; and
the distributed style may be coupled with Darwin [18].
Finally, certain ADLs, such as Aesop [19] and Wright [20],
allow an architectural style to be modelled formally using
the same environment and language that is, in turn, used to
model application architectures within that style. In each
such situation, the details of the models and analyses
depend on the characteristics of the style and features
and tool support of the chosen ADL.

6 Design modelling and re®nement into code

The process of choosing an architectural option, selecting
its architectural style and modelling the resulting architec-
ture in detail yields an architectural model. At this stage,
we have available a fairly well validated architectural
model of components, connectors, and their combined
con®gurations of which it is known that they exhibit
properties that satisfy the given requirements. What

Table 2: Preconditions and postconditions of two
components

Patient handling Treatment
req service prov service

pre (p nin pats) pre (m nnot in pat meds)

post (m nin - meds) post (p nin � cur pats)

nand (m nin �pat meds)

Fig. 8 Screenshot of SAAGE

The automatically generated UML model in Rational Rose is on the right
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remains to be done is to re®ne that architectural model into a
software system. That re®nement involves (i) the imple-
mentation of components that are not off-the-shelf; (ii) the
implementation of glue code (e.g. wrappers) around compo-
nents that are pre-existing (e.g. COTS or legacy); and (iii)
the implementation of connectors that enable components
to interact (unless they are COTS themselves as in CORBA
[21]). It is out of the scope of this paper to investigate these
issues in detail: however, in the following a brief overview
and references on how to realise such a transition are
provided in the context of the present framework.

The traditional way of implementing software models of
any kind is the manual process of reading and interpreting
available documentation, followed by programming it.
With the availability of architectural models, the task of
re®nement is simpli®ed in that major components are
speci®ed: those components provide the major partitions
of a system, and programming those partitions is less
complex in that they can be implemented separately.
Nevertheless, the downside of a manual re®nement

approach is that there are no guarantees that the model
descriptions are implemented correctly. Re®nement from
architectures into code must, however, ensure consistency
[22, 23]. Continuing on the path outlined in Fig. 1, two
major re®nement options are available:
(a) Re®ning the architecture into code: The synthesis
process for re®ning architectures varies depending on the
different architectural styles available (e.g. event-based,
main±subroutine, C2, etc.). Depending on the `richness'
of the chosen architectural styles, high degrees of code
generation are possible.
(b) Synthesising a design from an architecture: Using
generic-purpose notations such as the Uni®ed Modelling
Language [3] for re®nement has four major advantages:

(i) Re®ning into design models instead of code is less of
a gap to bridge and thus easier;
(ii) Design languages are generally more easibly under-
standable which makes subsequent non-automatable
coding simpler;

Table 3: Impact of component-based development approach

Modelling architectural options Modelling architecture Modelling design and coding

Modelling � Components � Architectural con®guration � Classes
constructs � Interactions � Architectural styles � Methods

� Conceptual features � Roles and responsibilities � Variables

Questions � What are the components � How can architectural options be � How can architectural models be
required to do? modelled and analysed without implemented?
� Can we exclude potentially implementing it? � How are con®gurations, styles,

unfeasible architectural options? � Does the architectural solution roles, and responsibilities
� What are the component satisfy requirements? transformed into programming

characteristics? constructs?

Time frame � Can frequently be done in hours � Can frequently be done in days or � Frequently takes many months or
for complex systems weeks for complex systems even years for complex systems

Given � Requirements � One or more viable architectural � One or more viable architectural
� Domain knowledge options based on components models that satisfy requirements
� COTS and legacy components � Known risks from previous stage � Known risks from previous stages

that were not resolved that were not resolved

Goals � Find components that could � Find an architectural style that � Consistently re®ne architectural
satisfy requirements (with or supports components, their model into code
without overlapping conceptual features, and their � Use design languages as
functionalities) interactions intermediate models if necessary
� Minimise mismatches between � Minimise the mismatches that (e.g. to enable design pattern

those components could occur between those reuse)
components, features and
interaction with the respective
chosen style (note: some styles
may be more suitable than others
for handling known mismatches)

Approaches � Vary components to minimise � Evaluate different architectural � Re®ne known style, component
potential risks (e.g. replace styles to investigate their and connectors information into
event-based component with potential impact code
blackboard-style component) � Re®ne (de®ne) undeclared � Re®ne known style, component
� Vary component interactions component and connector and connectors information into

(connectors) to minimise features to tailor integration design information
potential risks between styles, components, and
� Toggle variable component connectors

characteristics (e.g. of to-be-built
subsystems)

Tools � Trade-off analysis tool that supports � Selection mechanism that infers � De®ned re®nement mechanism
rapid evaluation of components styles out of known component for all types of styles and ADLs
incompatibilities among them and connector characteristics

� Trade-off-analysis tool that
supports rapid evaluations
between styles, components and
connectors
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(iii) Design speci®cations provide additional, more
program-language-speci®c constructs that might
increase the degree of (automated) code generation;
and ®nally;
(iv) Design modelling can make use of design patterns,
such as wrapper technologies, which in turn increases
the degree of reuse.

Based on the present example in C2SADEL, the SAAGE
environment is capable of supporting both re®nement
activities above: it can generate a partial implementation
of the architecture [14] and it can generate a UML design
[24, 25]. An in depth study has also been conducted of the
feasibility of mapping other ADLs to UML [25] covering
Rapide [16] and Wright. Furthermore, related works of
other researchers have done similar things for other types
of ADLs and architectural styles (e.g. domain-speci®c
layered style [26], real-time styles, object-oriented and
main-subroutine styles [27], proof-carrying architectural
styles [28]). Those works demonstrate that other types of
architectural style can be re®ned into code, either directly
or via intermediate design models.

7 Discussion

The proposed approach `interfaces' with requirements
engineering on one side and coding on the other. Require-
ments modelling needs feedback to evaluate the feasibility
of suggested options. If it takes weeks or months to give
that feedback, system requirements modelling may never
stabilise or arti®cial cut off dates must be set with negative
side effects for ¯exibility (e.g. waterfall model). If, on the
other hand, the feedback can be obtained in days, require-
ments modelling intertwined with architectural modelling
becomes feasible. The approach described provides feed-
back about unfeasible options in mere hours; in turn,
promising options can be selected and re®ned into archi-
tectures for more thorough risk analysis in days or weeks.

It is believed to be very bene®cial to combine model-
based and component-based development, since model
descriptions provide the context for how to combine
components whereas components address more speci®c
system needs. Furthermore, components are helpful in
partitioning architecture and design models: since compo-
nents represent independent subsystems, any resulting
models tend to become more independent themselves.
The proposed two-tiered development approach combines
modelling constructs and processes that were previously
separated.

The power of compositional-modelling techniques
provided through AAA and SAAGE lies in the fact that
major development concerns can be modelled, analysed,
and simulated early on, resulting in a very cost-effective
way of dealing with development risks. However, those
models add little value to the ®nal software product if the
product-related information stored in them cannot be
transitioned into the ®nal product. For instance, the C2
architectural style was chosen because the AAA analysis
suggested that there are potential risks that C2 could
remedy (e.g. remote connector). To ensure that the ®nal
product still resolves those risks, it is necessary also to
ensure that the ®nal product inherited all relevant char-
acteristics from its C2 architecture. In other words, it is
necessary to ensure consistent re®nement.

Since the example chosen for this paper is not repre-
sentative for all software products, a discussion has been
presented of how other types of situations could be
addressed via the present approach. To summarise the

`big picture' of the proposed development approach,
consider Table 3. Table 3 shows the three major elements
of the proposed development approach (columns) and their
properties. It brie¯y summarises the constructs available at
those respective stages, the questions we would like to
answer, the information initially available, the goals that
need to be achieved, the approaches one has available, and
the tools that support it. Table 3 has been extrapolated from
the discussion provided in the previous sections. It repre-
sents a quick reference for assessing the issues, progress
and results in a component-based development effort.

8 Conclusions

This paper discusses two modelling and analysis
approaches dealing with the `upstream' activities in the
software engineering life cycle: architectural options,
architectures and designs. An example is used to illustrate
their respective advantages in identifying and resolving
mismatches. It is shown how (mismatch) feedback from
one could impact others and drive development decisions.

The technique for evaluating architectural options may
yield useful feedback (e.g. risk assessments) within hours
and is highly useful for eliminating unfeasible options
early on (e.g. even during requirements negotiations),
however, this is at the expense of precision. The technique
for architectural modelling is complementary since it is
capable of performing more detailed and precise compo-
nent-mismatch analyses. This is at the expense of the effort
required. Both are needed to develop component-based
software rapidly, and thus, both have to be connected. To
that extent, mechanisms are de®ned for information shar-
ing among the chosen techniques. Additionally, techniques
for re®ning architectures systematically (with their incor-
porated component de®nitions) into more detailed archi-
tectures, designs and code were found.

The authors believe that mismatch detection should
happen as early on as possible. One software engineering
truism is that the longer a mismatch remains undetected the
more harm it might cause. The authors also believe that
automated analysis techniques are invaluable in getting
easy and fast initial feedback on potential problems and
challenges, regardless of the current development stage. It
has been shown that the techniques are useful as early as
the initial system analysis stage when the lack of informa-
tion drives development. It has also been shown that the
techniques can be used as late as coding and maintenance
when information abundance constitutes the key com-
plexity.

Working continues on tool support in three primary
directions:

(i) more extended coverage of other development models
such as architectural description languages and design
models; (ii) more complete data, control and process
integration between the tools; and (iii) more comprehen-
sive coverage of the software lifecycle (e.g. product
families, requirements engineering, reuse).
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